Basically Numpy stores the arrays as flat vectors. The multiple dimensions are just an illusion created by different views and strides that the Numpy iterator uses.
For a thorough but easy to follow explanation how Numpy internally works, see the excellent chapter 19 on The Beatiful Code book.
At least Numpy array()
and reshape()
have an argument for C ('C'), Fortran ('F') or preserved order ('A').
Also see the question How to force numpy array order to fortran style?
An example with the default C indexing (row-major order):
>>> a = np.arange(12).reshape(3,4) # <- C order by default
>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> a[1]
array([4, 5, 6, 7])
>>> a.strides
(32, 8)
>>> a = np.arange(12).reshape(3,4, order='F')
>>> a
array([[ 0, 3, 6, 9],
[ 1, 4, 7, 10],
[ 2, 5, 8, 11]])
>>> a[1]
array([ 1, 4, 7, 10])
>>> a.strides
(8, 24)
The other view
Also, you can always get the other kind of view using the parameter T of an array:
>>> a = np.arange(12).reshape(3,4, order='C')
>>> a.T
array([[ 0, 4, 8],
[ 1, 5, 9],
[ 2, 6, 10],
[ 3, 7, 11]])
>>> a = np.arange(12).reshape(3,4, order='F')
>>> a.T
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11]])
You can also manually set the strides:
>>> a = np.arange(12).reshape(3,4, order='C')
>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> a.strides
(32, 8)
>>> a.strides = (8, 24)
>>> a
array([[ 0, 3, 6, 9],
[ 1, 4, 7, 10],
[ 2, 5, 8, 11]])