Hi i'm trying to fine tuning vgg on my problem but when i try to train the net i get this error.
OOM when allocating tensor with shape[25088,4096]
The net has this structure:
I take this tensorflow pretrained vgg implementation code from this site.
I only add this procedure to train the net:
with tf.name_scope('joint_loss'):
joint_loss = ya_loss+yb_loss+yc_loss+yd_loss+ye_loss+yf_loss+yg_loss+yh_loss+yi_loss+yl_loss+ym_loss+yn_loss
# Loss with weight decay
l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables()])
self.joint_loss = joint_loss + self.weights_decay * l2_loss
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(joint_loss)
i try to reduce the batch size to 2 but not works i get the same error. The error is due to the big tensor that cannot be allocated in memory. I get this error only in train cause if i feed a value without minimize the net works. How i can avoid this error? how can i save memory of graphic card(Nvidia GeForce GTX 970)?
UPDATE: if i use the GradientDescentOptimizer the training process start, instead if i use AdamOptimizer i get the memory error, seems that the GradientDescentOptimizer use less memory.