I am trying impelement code in pytorch but I get bellow error. my python version is 3.6 and my os is linux ubuntu 16.04 lts. I installed my linux alongside of mac os. We will use torchvision and torch.utils.data packages for loading the data.There are 75 validation images for each class.
OSError Traceback (most recent call last)
<ipython-input-4-e0e3a841f698> in <module>()
62
63 # Get a batch of training data
---> 64 inputs, classes = next(iter(dset_loaders['train']))
65
66 # Make a grid from batch
/home/zeinab/anaconda3/lib/python3.6/site-packages/torch/utils/data/dataloader.py in __next__(self)
172 self.reorder_dict[idx] = batch
173 continue
--> 174 return self._process_next_batch(batch)
175
176 next = __next__ # Python 2 compatibility
/home/zeinab/anaconda3/lib/python3.6/site-packages/torch/utils/data/dataloader.py in _process_next_batch(self, batch)
196 self._put_indices()
197 if isinstance(batch, ExceptionWrapper):
--> 198 raise batch.exc_type(batch.exc_msg)
199 return batch
200
OSError: Traceback (most recent call last):
File "/home/zeinab/anaconda3/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 32, in _worker_loop
samples = collate_fn([dataset[i] for i in batch_indices])
File "/home/zeinab/anaconda3/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 32, in <listcomp>
samples = collate_fn([dataset[i] for i in batch_indices])
File "/home/zeinab/anaconda3/lib/python3.6/site-packages/torchvision-0.1.7-py3.6.egg/torchvision/datasets/folder.py", line 57, in __getitem__
img = self.loader(os.path.join(self.root, path))
File "/home/zeinab/anaconda3/lib/python3.6/site-packages/torchvision-0.1.7-py3.6.egg/torchvision/datasets/folder.py", line 38, in default_loader
return Image.open(path).convert('RGB')
File "/home/zeinab/anaconda3/lib/python3.6/site-packages/PIL/Image.py", line 2349, in open
% (filename if filename else fp))
OSError: cannot identify image file 'hymenoptera_data/train/ants/._154124431_65460430f2.jpg'
my code is bellow:
%matplotlib inline
# License: BSD
# Author: Sasank Chilamkurthy
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import copy
import os
from PIL import Image
import os, sys
plt.ion() # interactive mode
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'hymenoptera_data'
dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
for x in ['train', 'val']}
dset_loaders = {x: torch.utils.data.DataLoader(dsets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dset_sizes = {x: len(dsets[x]) for x in ['train', 'val']}
dset_classes = dsets['train'].classes
use_gpu = torch.cuda.is_available()
def imshow(inp, title=None):
"""Imshow for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
# Get a batch of training data
inputs, classes = next(iter(dset_loaders['train']))
# Make a grid from batch
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[dset_classes[x] for x in classes])