There's already other answers out there for memoising recursive functions, but I'll adapt that answer to factorial in javascript so you can see how it works more easily
The secret to writing memoised recursive functions is continuation passing style. A similar technique works when you want to make a non-tail recursive function stack-safe.
I'll leave some console.log
statements in this first example so you can see when it's actually computing and when it's just doing a memo lookup.
const memoise = f => {
const memo = new Map()
const compute = (x, k) =>
(console.log('compute', x),
memo.get(x, memo.set(x, f(x,k))))
const lookup = x =>
(console.log('lookup', x),
memo.has(x) ? memo.get(x) : compute(x, lookup))
return lookup
}
const factk = (x, k) => {
if (x === 0)
return 1
else
return x * k(x - 1)
}
const memfact = memoise(factk)
console.log(memfact(5)) // 120
console.log(memfact(7)) // 5040
Here I've removed the console.log
calls inside of memoise
and instead demonstrate a memoised fibonacci function vs an unmemoised one. Compare the dramatic time difference between memoise(fibk)
and badfib
const memoise = f => {
const memo = new Map()
const compute = (x, k) =>
memo.get(x, memo.set(x, f(x,k)))
const lookup = x =>
memo.has(x) ? memo.get(x) : compute(x, lookup)
return lookup
}
const fibk = (x, k) => {
if (x < 2)
return x
else
return k(x - 1) + k(x - 2)
}
const badfib = x => {
if (x < 2)
return x
else
return badfib(x - 1) + badfib(x - 2)
}
console.time('memoised')
console.log(memoise (fibk) (35)) // 9227465 1.46ms
console.timeEnd('memoised')
console.time('unmemoised')
console.log(badfib(35)) // 9227465 135.85ms
console.timeEnd('unmemoised')