The pandas dataframe rows correspond to successive time samples of a Kalman filter. I want to display the trajectory (truth, measurements and filter estimates) in a stream.
def show_tracker(index,data=run_tracker()):
i = int(index)
sleep(0.1)
p = \
hv.Scatter(data[0:i], kdims=['x'], vdims=['y'])(style=dict(color='r')) *\
hv.Curve (data[0:i], kdims=['x.true'], vdims=['y.true']) *\
hv.Scatter(data[0:i], kdims=['x.est'], vdims=['y.est'])(style=dict(color='darkgreen')) *\
hv.Curve (data[0:i], kdims=['x.est'], vdims=['y.est'])(style=dict(color='lightgreen'))
return p
%%opts Scatter [width=600,height=280]
ndx=TimeIndex()
hv.DynamicMap(show_tracker, kdims=[], streams=[ndx])
for i in range(N):
ndx.update(index=i)
Issue 1: Axes are automatically set to the bounds of the data. Consequently, trajectory updates occur at the very edge of the plot boundaries. Is there a setting to allow some slop, or do I have to compute appropriate bounds in the show_tracker function?
Issue 2: Bokeh backend; I can zoom and pan, but "Reset" causes the data set to be lost. How do I fix that?
Issue 3: The default data argument to show_tracker requires the function to be reexecuted to generate a new dataframe. Is there an easy way to address that?