import numpy as np
def softmax(x):
row_num = x.shape[0]
col_num = x.shape[1]
for m in row_num:
for n in col_num:
new_x[m,n] = np.exp(x[m,n])/sum(x[:,n])
return new_x
logits = [1.0, 2.0, 3.0]
logits2 = np.array([
[1, 2, 3, 6],
[2, 4, 5, 6],
[3, 8, 7, 6]])
print(softmax(logits1))
print(softmax(logits2))
Above is the function for softmax (it is used to turn logits to probabilities)
I want to obtain the solution shown as below:
[ 0.09003057 0.24472847 0.66524096]
[
[ 0.09003057 0.00242826 0.01587624 0.33333333]
[ 0.24472847 0.01794253 0.11731043 0.33333333]
[ 0.66524096 0.97962921 0.86681333 0.33333333]
]
However, error was revealed that "'int' object is not iterable". In addition, I want to see a more efficient code for this function with less complexity.