I am trying to backtest stock returns given a 10 month moving average rule. The rule being, if the price is above the 10mnth average - buy, if it is below the 10mnth average - hold the value constant.
I know how to do this in excel very easily, but I am having trouble in R.
Below is my approach in R:
#Downloand financial data
library(Quandl)
SPY <- Quandl("YAHOO/INDEX_GSPC", type = "xts", collapse = "monthly")
head(SPY)
#Calculate log returns
SPY$log_ret <- diff(log(SPY$Close))
#Calculate moving average for Closing price
SPY$MA.10 <- rollapply(SPY$Close, width = 10, FUN = mean)
#Create binary rule to determine when to buy and when to hold
#1 = Buy
SPY$Action <- ifelse(SPY$MA.10 < SPY$Close, 1, 0)
#Create default value in a new column to backtest returns
SPY$Hit <- 100
#Calculate cumulative returns
SPY$Hit <-ifelse(SPY$Action == 1, SPY[2:n, "Hit"] *
(1 + SPY$log_ret), lag.xts(SPY$Hit, k=1))
Returns do get calculated correctly for an Action of 1, but when the Action is not 1, I find that SPY$Hit only lags 1 time, then defaults to the 100 value, while I would like it to hold the value from the last Action == 1 time.
This formula works very well in MS Excel and is very easy to implement, but it seems that the issue in R is that I cannot keep the value constant from the last Action == 1, how can I do this so that I can see how well this simple trading strategy would work?
Please let me know if I can clarify this further, thank you.
Sample of the desired output:
Action Return Answer
[1,] 0 0.00 100.00000
[2,] 1 0.09 109.00000
[3,] 1 0.08 117.72000
[4,] 1 -0.05 111.83400
[5,] 1 -0.03 108.47898
[6,] 0 -0.02 108.47898
[7,] 0 0.01 108.47898
[8,] 0 0.06 108.47898
[9,] 1 -0.03 105.22461
[10,] 0 0.10 105.22461
[11,] 1 -0.05 99.96338