I have this code:
import numpy as np
def sigmoid(x):
"""
Calculate sigmoid
"""
return 1 / (1 + np.exp(-x))
x = np.array([0.5, 0.1, -0.2])
target = 0.6
learnrate = 0.5
weights_input_hidden = np.array([[0.5, -0.6],
[0.1, -0.2],
[0.1, 0.7]])
weights_hidden_output = np.array([0.1, -0.3])
## Forward pass
hidden_layer_input = np.dot(x, weights_input_hidden)
hidden_layer_output = sigmoid(hidden_layer_input)
output_layer_in = np.dot(hidden_layer_output, weights_hidden_output)
output = sigmoid(output_layer_in)
## Backwards pass
## TODO: Calculate error
error = target - output
# TODO: Calculate error gradient for output layer
del_err_output = error * output * (1 - output)
print("del_err_output", del_err_output)
# TODO: Calculate error gradient for hidden layer
del_err_hidden = np.dot(del_err_output, weights_hidden_output) * hidden_layer_output * (1 - hidden_layer_output)
print("del_err_hidden", del_err_hidden)
print("del_err_hidden.shape", del_err_hidden.shape)
print("x", x)
print("x.shape", x.shape)
print("x[:,None]")
print(x[:,None])
print("x[:,None].shape", x[:,None].shape)
print("del_err_hidden * x[:, None]")
print(del_err_hidden * x[:, None])
that generates this output:
del_err_output 0.0287306695435
del_err_hidden [ 0.00070802 -0.00204471]
del_err_hidden.shape (2,)
x [ 0.5 0.1 -0.2]
x.shape (3,)
x[:,None]
[[ 0.5]
[ 0.1]
[-0.2]]
x[:,None].shape (3, 1)
del_err_hidden * x[:, None]
[[ 3.54011093e-04 -1.02235701e-03]
[ 7.08022187e-05 -2.04471402e-04]
[ -1.41604437e-04 4.08942805e-04]]
My problem is with this operation: del_err_hidden * x[:, None]
Which kind of operation is *
?
And second, if del_err_hidden.shape
is (2,) and x[:,None].shape
is (3, 1), why I can multiply them?
Someone has told me that it is related to elementwise and broadcasting, but I don't understand those terms. Because to do a elementwise multiplication both matrices have to have the same size, and here they don't have it.