shadow chris pointed me in the right direction so I share my solution to make it work with a TF-records dataset.
For better unstanding I relate my code to the flower example of TF-Slim.
1) Modify your dataset script to store a filename feature in the TF-records.
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.FixedLenFeature((), tf.string, default_value='png'),
'image/class/label': tf.FixedLenFeature(
[], tf.int64, default_value=tf.zeros([], dtype=tf.int64)),
'image/filename': tf.FixedLenFeature((), tf.string, default_value=''),
}
items_to_handlers = {
'image': slim.tfexample_decoder.Image(),
'label': slim.tfexample_decoder.Tensor('image/class/label'),
'filename': slim.tfexample_decoder.Tensor('image/filename'),
}
2) Add filename parameter to data util's image_to_tfexample
function
It should then look like:
def image_to_tfexample(image_data, image_format, height, width, class_id, filename):
return tf.train.Example(features=tf.train.Features(feature={
'image/encoded': bytes_feature(image_data),
'image/format': bytes_feature(image_format),
'image/class/label': int64_feature(class_id),
'image/height': int64_feature(height),
'image/width': int64_feature(width),
'image/filename': bytes_feature(filename)
}))
3) Modify download and convert script to save filenames
Feed your TF record with the filename.
example = dataset_utils.image_to_tfexample(
image_data, 'jpg', height, width, class_id, filenames[i])
4) In your evaluation map misclassified imgs to filename
I'm refering to eval_image_classifier.py.
Retrieve filenames with tf.train.batch:
images, labels, filenames = tf.train.batch(
[image, label, filename],
batch_size=FLAGS.batch_size,
num_threads=FLAGS.num_preprocessing_threads,
capacity=5 * FLAGS.batch_size)
Get misclassified imgs and map them to filenames:
predictions = tf.argmax(logits, 1)
labels = tf.squeeze(labels)
mislabeled = tf.not_equal(predictions, labels)
mislabeled_filenames = tf.boolean_mask(filenames, mislabeled)
Print:
eval_op = tf.Print(eval_op, [mislabeled_filenames])
slim.evaluation.evaluate_once(
.... # other options
eval_op=eval_op,
.... # other options)