I have applied an R chi square test on a dataset with two nominal variables, namely subject category(SC) and Research Institution(RI). The table looks like this
RI1 RI2 RI3 RI4 RI5 RI6 RI7 RI8 RI9 RI10
sc1 4.95 2.97 2.97 5.94 3.96 7.92 25.74 44.55 0.99 0.00
sc2 6.53 3.01 11.55 5.52 5.02 6.03 23.61 38.19 0.00 0.50
sc3 6.12 4.08 10.20 6.12 0.00 2.04 24.48 44.89 0.00 2.04
sc4 10.00 0.00 2.00 8.00 0.00 4.00 32.00 42.00 0.00 2.00
sc5 10.93 3.12 6.25 3.12 1.56 6.25 23.43 42.18 1.56 1.56
sc6 6.10 4.58 12.21 6.87 3.05 4.58 24.42 35.87 1.52 0.76
sc7 11.90 7.14 11.90 7.14 2.38 2.38 33.33 19.04 0.00 4.76
sc8 8.60 3.22 6.98 5.37 3.76 3.76 20.96 43.01 1.61 2.68
sc9 7.27 4.84 13.93 6.06 4.24 2.42 19.39 40.00 1.21 0.60
sc10 3.75 0.00 8.75 7.50 1.25 1.25 33.75 40.00 2.50 1.25
The chi-square results are as follows:
chisq.test(mydata)
Pearson's Chi-squared test
data: mydata
X-squared = 102.51, df = 81, p-value = 0.05357
Warning message:
In chisq.test(mydata) : Chi-squared approximation may be incorrect
I would like to apply a Bonferroni correction on the p-value. My hypothesis is that subject category does not influence the number of publications in a research institute. My question is, since i have 10 subject categories, should i divide the p-value by 10?...
P.S. I have not yet reached 15 points therefore cannot create a new tag "Bonferroni correction"