I had a use-case that I thought was really simple but couldn't find a way to do it with h2o. I thought you might know.
I want to train my model once, and then evaluate its ROC on a few different test sets (e.g. a validation set and a test set, though in reality I have more than 2) without having to retrain the model. The way I know to do it now requires retraining the model each time:
train, valid, test = fr.split_frame([0.2, 0.25], seed=1234)
rf_v1 = H2ORandomForestEstimator( ... )
rf_v1.train(features, var_y, training_frame=train, validation_frame=valid)
roc = rf_v1.roc(valid=1)
rf_v1.train(features, var_y, training_frame=train, validation_frame=test) # training again with the same training set - can I avoid this?
roc2 = rf_v1.roc(valid=1)
I can also use model_performance(), which gives me some metrics on an arbitrary test set without retraining, but not the ROC. Is there a way to get the ROC out of the H2OModelMetrics object?
Thanks!