I have this Matlab project but for some reason I just cannot stop thinking about it because I could not get it to work.
Objective:
This is a MATLAB script that would calculate the change of pressure, temperature and density of a glider that is being dropped from 10000 feet. As it falls, we want to use those new values calculated and then plugged in a function that has 4 equations that need to be differentiated at every point using ode45 as well as the new values of P T and Rho.
Here is the main code:
% HouseKeeping:
clc
clear all
close all
% Constants:
S = 232; % ft^2
Cd0 = 0.02;
K = 0.07;
W = 11000; % lbf
Cl_max = sqrt(Cd0/K);
Cd_max = 2*K*Cl_max^2;
Rho_10000 = .001756; % slugs/ ft^3
%Initial conditions:
t = 0; % Sec
x = 0; % ft
h = 10000; % ft
v = sqrt((2*W)/(Rho_10000*S*Cl_max)); %ft/s
gamma = -Cd_max/Cl_max;
% Find Endurance:
V_RD= sqrt((2*W)/(S* Rho_10000* sqrt(3*Cd0/K)));
RD= V_RD/((sqrt(3*Cd0/K))/(2*Cd0)) ; % ft/s
Endurcance= h/RD; % 958.3515 sec
% Sea Level values:
TSL = 518.69; % Rankine
PSL = 2116.199414; % lbs/ft^2
RhoSL = 0.0023769; % slugs/ft^3
while h > 0
tspan = [t t+1];
i=1;
X = [x;h;v;gamma;Rho_10000];
Time(i)= t;
% Calling ODE45:
[F] = ode45(@ D,tspan, X)
% Hight Varying Parameters:
T = TSL - 0.00356616*h;
P = (1.137193514E-11)*(T)^5.2560613;
Rho = (RhoSL * TSL / PASL)*(P / T);
a = 49.0214 * (T)^.5;
H_Del(i) = (-Cd_max/Cl_max)*(plotted_x(i))+10000;
V_Del(i) = sqrt((2*W)/(Rho*S*Cl_max));
Gamma_Del(i) = -Cd_max/Cl_max;
i= i+1;
X = [ x ; H_Del(i); V_Del(i); Gamma_Del(i); Rho];
end
% Plots:
%1
figure (1)
plot(F(:,1),'-r',F(:,3),'-b')
title('Velocity vs Distance');
xlabel('x (ft)');
ylabel('v (ft/s)');
%2
Figure (2)
plot(F(:,1),'-r',F(:,2),'-b')
title('Altitude vs Distance ');
xlabel('x (ft)');
ylabel('h (ft)');
%3
figure (3)
plot(F(:,1),'-r',F(:,4),'-b')
title('Gamma vs Distance');
xlabel('x (ft)');
ylabel('Gamma (rad)');
%4
figure (4)
plot(t,'-r',F(:,3),'-b')
title('Velocity vs Time');
xlabel(' t (s)');
ylabel('v (ft/s)');
%5
figure (5)
plot(t,'-r',F(:,1),'-b')
title(' Distance vs Time ');
xlabel('t (s)');
ylabel('x (ft)');
%6
figure (6)
plot(t,'-r',F(:,4),'-b')
title('Gamma vs Time ');
xlabel('t (s)');
ylabel('Gamma (rad)');
%7
figure (7)
plot(t,'-r',F(:,3),'-b')
title('Velocity vs Time');
xlabel('t (s)');
ylabel('V (ft/s)');
Here is the Function
function [F] = D(X)
% Constants:
S = 232; % ft^2
Cd0 = 0.02;
K = 0.07;
W = 11000; % lbf
Cl_max = sqrt(Cd0/K);
Cd_max = 2*K*Cl_max^2;
Rho_10000 = .001756; % slugs/ ft^3
% Initial conditions:
t = 0; % Sec
x = 0; % ft
h = 10000; % ft
v = sqrt((2*W)/(Rho_10000*S*Cl_max)); % ft/s
gamma = -Cd_max/Cl_max;
g= 32.2; % ft/s^2
% Equations:
X_Pr = X(3)*cos(X(4));
H_Pr = X(3)*sin(X(4));
V_Pr = (-32.2./W)*(0.5*X(5)*Cd_max*S*X(3)^2 + W*sin(X(4)));
G_Pr = (32.2./(W*X(3)))*(0.5*X(5)*Cl_max*S*X(3)^2 - W*cos(X(4)));
F = [X_Pr;H_Pr;V_Pr;G_Pr];
I am not very good with Matlab but I did my very best! I went to my professors for help but they said they were too busy. I even stalked every senior I knew and they all said they did not know how to do it. My next project will be assigned soon and I think that if I cannot do this then I would not be able to do the next one.