I'm trying to see if a specific algorithm can be translated to the kind of map-reduce index RavenDB/CouchDB uses, ie, "pre-computed" map-reduce (which means the indexes are refreshed on insertion and updates, not when performing the actual query).
Let's say we have a typical online store with 50,000 products, grouped in categories. Every product has a collection of "Attribute Values", ie, something like "[Red, Round, Metal]".
Since we have so much products on our website, and there's probably a lot of items in each of the categories, we want to give the user another way to "filter" the products he's currently seeing.
For example, if a category is "Less than $20", there's a whole bunch of products in this category. But our user only need to see products which are less than $20 and Red. Unfortunately, there's no sub-category "Red" in the "Less than $20" category.
Our algorithm would take the current list of products, and generate a list of "interesting" Attributes and Attribute Values, ie, given a list of products, it would output something like:
Color
Red (40)
Blue (32)
Yellow (17)
Material
Metal (37)
Plastic (36)
Wood (23)
Shape
Square (56)
Round (17)
Cylinder (12)
Could this sort of algorithm be somehow pre-computed à la RavenDB/CouchDB map-reduce index? If not, why exactly (so I can identify that kind of algorithm in the future) and if yes, how?
A C# 4.0 Visual Studio Test Solution is available that demonstrates the potential data structures and sample data, as well as a try at a map-reduce implementation (which doesn't seem to be pre-computable).