How can I run Multivariate Imputation by Chained Equations with mice() for this dataset, using rows 1:10, but predicting only for row #11?
library(mice)
library(car)
df = mtcars[c(1:10), c(3:5)]
df[c(1:3), c(1)] = NA
df[c(4:7), c(2)] = NA
df[c(8:10), c(3)] = NA
df[nrow(df) + 1, names(df)] <- NA
disp hp drat Mazda RX4 NA 110 3.90 Mazda RX4 Wag NA 110 3.90 Datsun 710 NA 93 3.85 Hornet 4 Drive 258.0 NA 3.08 Hornet Sportabout 360.0 NA 3.15 Valiant 225.0 NA 2.76 Duster 360 360.0 NA 3.21 Merc 240D 146.7 62 NA Merc 230 140.8 95 NA Merc 280 167.6 123 NA 11 NA NA NA
imp = mice(df, m = 10, seed = 52545, print = FALSE)
This code runs flawlessly, but mice() tries to predict all the NA's. I wouldn't like to spend resources to calculate those, I only need to predict row #11.