# I've created example data frame with column Adress
df <- data.frame(Adress = c("Braemor Drive",
"Clontarf",
"Co.Dublin",
"Meadow Avenue",
"Dundrum",
"Philipsburgh Avenue",
"Marino",
"Myrtle Square", "The Coast"))
# And vector Dublin
Dublin3 <- c("Marino", "Fairview", "Clontarf")
# Match names in column Adress and vector Dublin 3
df$District <- ifelse(df$Adress %in% Dublin3, "Dublin 3",FALSE)
df
Adress District
1 Braemor Drive FALSE
2 Clontarf Dublin 3
3 Co.Dublin FALSE
4 Meadow Avenue FALSE
5 Dundrum FALSE
6 Philipsburgh Avenue FALSE
7 Marino Dublin 3
8 Myrtle Square FALSE
9 The Coast FALSE
Instead of FALSE
you can choose something else (e.g. NA
).
Edited: If your data are in vector
df <- c("Braemor Drive, Churchtown, Co.Dublin",
"Meadow Avenue, Clontarf, Dublin 14",
"Sallymount Avenue, Ranelagh", "Philipsburgh Avenue, Marino")
Which looks like this
df
[1] "Braemor Drive, Churchtown, Co.Dublin"
[2] "Meadow Avenue, Clontarf, Dublin 14"
[3] "Sallymount Avenue, Ranelagh"
[4] "Philipsburgh Avenue, Marino"
You can find your maches using grepl
like this
match <- ifelse(grepl("Marino|Fairview|Clontarf", df, ignore.case = T), "Dublin 3",FALSE)
and output is
[1] "FALSE" "Dublin 3" "FALSE" "Dublin 3"
Which means that one or all of the matching names that you are looking for (i.e. Marino, Fairview or Clontarf) are in second and fourth row in df
.