I'm trying to implement a neural network with sigmoid function But the following code doesnot work This is the training part of neural network. It doesnot update the weights properly What is wrong in this code?
clc; clear all; close all;
% load train_data1
train_data1=[-0.498800000000000,-0.257500000000000;-0.492800000000000,-0.274300000000000;-0.470300000000000,-0.282600000000000;-0.427400000000000,-0.474000000000000;-0.420400000000000,-0.518000000000000;-0.326300000000000,-1.13230000000000;-0.317300000000000,-0.875300000000000;-0.295000000000000,-1.02770000000000;-0.267600000000000,-0.882800000000000;-0.260500000000000,-0.976500000000000;-0.216100000000000,-0.970400000000000;-0.207000000000000,-0.813800000000000;-0.164000000000000,-0.696600000000000;-0.159900000000000,-0.793300000000000;-0.122000000000000,-0.764400000000000;-0.0729000000000000,-0.435300000000000;-0.00640000000000000,-0.0546000000000000;0.132200000000000,0.710300000000000;0.137100000000000,0.587000000000000;0.160300000000000,0.819200000000000;0.230600000000000,0.989200000000000;0.286800000000000,0.737700000000000;0.334000000000000,0.943500000000000;0.375200000000000,0.688200000000000;0.429700000000000,0.567800000000000];
train_data1 = sortrows(train_data1);
% normalize data to [0,1]
data1=[train_data1];
max1=max(max(data1));
min1=min(min(data1));
train_data2 = (train_data1 - min1) / ( max1 - min1);
x = train_data2(:,1); % train input data
r = train_data2(:,2); % train output data
hidden_neurons = 2;
maxepochcount = 1000;
datacount1 = size(x,1);
% add a bias as an input
bias = ones(datacount1,1);
% x = [x bias];
% read how many inputs
inputcount = size(x,2);
% ---------- data loaded -----------
% ---------- set weights -----------
% set initial random weights
WI = (randn(inputcount,hidden_neurons) - 0.5)/10;
WO = (randn(1,hidden_neurons) - 0.5)/10;
%-----------------------------------
%--- Learning Starts Here! ---------
%-----------------------------------
eta1 = 0.5;
eta2 = eta1/5;
% do a number of epochs
for iter = 1:maxepochcount
% loop through the data
for j = 1:datacount1
% read the current sample
I = x(j,:);
D = r(j,1);
% calculate the error for this sample
H = (sigmoid(I * WI))';
O = H' * WO';
error = D-O;
% adjust weight between hidden & output
delta_i = O.*(1-O).*(D-O); % D actual, O calculated output
% Calculate error for each node in layer_(n-1)
delta_j = H.*(1-H).*(WO.'*delta_i); % H.' is the output of hidden layer
% Adjust weights in matrices sequentially
WO = WO + eta2.*delta_i*(H.') % H.' is the output of hidden layer
WI = WI + eta1.*(delta_j*(I))' % I.' is the inputs
% % adjust weight between hidden & output
% delta_HO = error.*eta2 .* hidden_val;
% WO = WO - delta_HO';
% % adjust the weights between input & hidden
% delta_IH = eta1 .* error .* WO' .* (1 - (H .^ 2)) * I;
% WI = WI - delta_IH';
end
O = sigmoid(WO*sigmoid(x * WI)');
% error(iter) = (sum(error .^ 2)) ^ 0.5;
if rem(iter,100)==0 % Every 100 epochs, show how training is doing
plot(x,O, 'color','red','linewidth',2); hold on;
drawnow;
iter
end
% return
end