I currently try to retrieve the last decendet efficiently from a linked list like structure.
Essentially there's a table with a data series, with certain criteria I split it up to get a list like this
current_id | next_id
for example
1 | 2
2 | 3
3 | 4
4 | NULL
42 | 43
43 | 45
45 | NULL
etc...
would result in lists like
1 -> 2 -> 3 -> 4
and
42 -> 43 -> 45
Now I want to get the first and the last id from each of those lists.
This is what I have right now:
WITH RECURSIVE contract(ruid, rdid, rstart_ts, rend_ts) AS ( -- recursive Query to traverse the "linked list" of continuous timestamps
SELECT start_ts, end_ts FROM track_caps tc
UNION
SELECT c.rstart_ts, tc.end_ts AS end_ts0 FROM contract c INNER JOIN track_caps tc ON (tc.start_ts = c.rend_ts AND c.rend_ts IS NOT NULL AND tc.end_ts IS NOT NULL)
),
fcontract AS ( --final step, after traversing the "linked list", pick the largest timestamp found as the end_ts and the smallest as the start_ts
SELECT DISTINCT ON(start_ts, end_ts) min(rstart_ts) AS start_ts, rend_ts AS end_ts
FROM (
SELECT rstart_ts, max(rend_ts) AS rend_ts FROM contract
GROUP BY rstart_ts
) sq
GROUP BY end_ts
)
SELECT * FROM fcontract
ORDER BY start_ts
In this case I just used timestamps which work fine for the given data.
Basically I just use a recursive query that walks through all the nodes until it reaches the end, as suggested by many other posts on StackOverflow and other sites. The next query removes all the sub-steps and returns what I want, like in the first list example: 1 | 4
Just for illustration, the produced result set by the recursive query looks like this:
1 | 2
2 | 3
3 | 4
1 | 3
2 | 4
1 | 4
As nicely as it works, it's quite a memory hog however which is absolutely unsurprising when looking at the results of EXPLAIN ANALYZE
.
For a dataset of roughly 42,600 rows, the recursive query produces a whopping 849,542,346 rows. Now it was actually supposed to process around 2,000,000 rows but with that solution right now it seems very unfeasible.
Did I just improperly use recursive queries? Is there a way to reduce the amount of data it produces?(like removing the sub-steps?) Or are there better single-query solutions to this problem?