I'm trying to boost a classification tree using the gbm
package in R and I'm a little bit confused about the kind of predictions I obtain from the predict
function.
Here is my code:
#Load packages, set random seed
library(gbm)
set.seed(1)
#Generate random data
N<-1000
x<-rnorm(N)
y<-0.6^2*x+sqrt(1-0.6^2)*rnorm(N)
z<-rep(0,N)
for(i in 1:N){
if(x[i]-y[i]+0.2*rnorm(1)>1.0){
z[i]=1
}
}
#Create data frame
myData<-data.frame(x,y,z)
#Split data set into train and test
train<-sample(N,800,replace=FALSE)
test<-(-train)
#Boosting
boost.myData<-gbm(z~.,data=myData[train,],distribution="bernoulli",n.trees=5000,interaction.depth=4)
pred.boost<-predict(boost.myData,newdata=myData[test,],n.trees=5000,type="response")
pred.boost
pred.boost
is a vector with elements from the interval (0,1)
.
I would have expected the predicted values to be either 0
or 1
, as my response variable z
also consists of dichotomous values - either 0
or 1
- and I'm using distribution="bernoulli"
.
How should I proceed with my prediction to obtain a real classification of my test data set? Should I simply round the pred.boost
values or is there anything I'm doing wrong with the predict
function?