I want to use output embedding of word2vec such as in this paper (Improving document ranking with dual word embeddings).
I know input vectors are in syn0, output vectors are in syn1 and syn1neg if negative sampling.
But when I calculated most_similar with output vector, I got same result in some ranges because of removing syn1 or syn1neg.
Here is what I got.
IN[1]: model = Word2Vec.load('test_model.model')
IN[2]: model.most_similar([model.syn1neg[0]])
OUT[2]: [('of', -0.04402521997690201),
('has', -0.16387106478214264),
('in', -0.16650712490081787),
('is', -0.18117375671863556),
('by', -0.2527652978897095),
('was', -0.254993200302124),
('from', -0.2659570872783661),
('the', -0.26878535747528076),
('on', -0.27521973848342896),
('his', -0.2930959463119507)]
but another syn1neg numpy vector is already similar output.
IN[3]: model.most_similar([model.syn1neg[50]])
OUT[3]: [('of', -0.07884830236434937),
('has', -0.16942456364631653),
('the', -0.1771494299173355),
('his', -0.2043554037809372),
('is', -0.23265135288238525),
('in', -0.24725285172462463),
('by', -0.27772971987724304),
('was', -0.2979024648666382),
('time', -0.3547973036766052),
('he', -0.36455872654914856)]
I want to get output numpy arrays(negative or not) with preserved during training.
Let me know how can I access pure syn1 or syn1neg, or code, or some word2vec module can get output embedding.