This is an example from a textbook: Consider the relation R (A ,B ,C ,D ,E ) with FD’s AB -> C, C -> B, and A -> D.
We get that the key is ABE and ACE. With decompositions: ABE+=ACE+=ABCDE.
How do you check minimality? I know that AB+=ABD and the textbook says that because AB+ does not include C. Then it is minimal. C+=AB and A+=AD are also minimal. But I do not know why. How do you check minimality?
Also, do we have to find all the FD's besides the ones given to check whether to perform 3-NF or not?
We then check if AB -> C can be split into A -> C and B -> C, we notice that these do not stand on their own so AB -> C is not splittable.
We are left with the final relations: S1(ABC), S2(BC), S3(AD) and the key (since not present) S4(ABE) (or S4(ABC)). We then remove S2 because it's a subset of S1.
If it is in 3NF and there are no violations, then why do they split the original relation into: S1(A, B, C), S2(A, D), and S4(A, B, E).
Book name and page: Ullman's Database Systems page 103