Usually I am lazy and calculate modular inverses as follows:
def inv(a,m):
return 1 if a==1 else ((a-inv(m%a,a))*m+1)//a
print(inv(100**7000,99**7001))
But I was curious to know whether the method of passing more information back, namely the solution to Bezout's theorem (instead of just one of the pair), yields a faster or slower algorithm in practice:
def bez(a,b):
# returns [x,y,d] where a*x+b*y = d = gcd(a,b) since (b%a)*y+a*(x+(b//a)*y)=d
if a==0: return [0,1,b] if b>0 else [0,-1,-b]
r=bez(b%a,a)
return [r[1]-(b//a)*r[0],r[0],r[2]]
def inv(a,m):
r=bez(a,m)
if r[2]!=1: return None
return r[0] if r[0]>=0 else r[0]+abs(m)
print(inv(100**7000,99**7001))
I was amazed to find that the latter ran more than 50 times faster than the former! But both use nearly the same number of recursive calls and 1 integer division and 1 modulo operation per call, and the bit-length of the operands is roughly twice in the former on average (because the arguments involved are identical), so I only expect its time complexity to be roughly 4 times that of the latter, not 50 times.
So why am I observing this strange speedup?
Note that I am using Python 3, and I observed this when running online, with the following code added at the top to stop the Python interpreter complaining about exceeding maximum recursion depth or stack space:
import resource,sys
sys.setrecursionlimit(1000000)
resource.setrlimit(resource.RLIMIT_STACK,[0x10000000,resource.RLIM_INFINITY])