I am working on finding the initial points of convergence using newton's iteration method in mathematica. newton function works now I would like to show which initial points from a grid produce Newton iterations that converge to -1, same for points that converge to (1 + (3)^1/2)/2i, given that:
f(x) = x^3+1
newton[x0_] := (
x = x0;
a1 = {};
b1 = {};
c1 = {};
counter = 0;
error = Abs[f[x]];
While[counter < 20 && error > 0.0001,
If[f'[x] != 0, x = x - N[f[x]/f'[x]]];
counter = counter + 1;
error = Abs[f[x]]];
x)
I created a grid to show which initial points of a+bi converge to the roots.
grid = Table[a + b I, {a, -2, 2, 0.01}, {b, -2, 2, 0.01}];
Then I created a fractal, but whenever I plot it gives me a blank graph on the axis.
There's got to be a way for me to be able to identify the converge points from the grid but so far I have not been successful. I tried using the Which[] method but when comparing the value its returns false.
Any help will appreciate it