I have data set like below:
level Year Priority Avg_Effort_in_Hrs Total_Effort_in_Hrs
A 2015 Medium 33.6 34
B 2016 Low 34.6 67
C 2014 High 45.6 78
D 2016 High 67.6 89
E 2016 Low 56.8 346
F 2015 Medium 10 76
G 2015 High 23.6 88
I want to plot these data to see the avg_efforts_in_hrs and total_efforts_in_hrs by year,level and priority.
I am using below code to plot both these separately.
Problem here is that the discrete values in my level column are more than 200. When I plot these data its not clearly visible and also for some values its not assigning any shape.
###### Code ########
png(file="mygraphic_1.png",width=900,height=850)
ggplot(data=data,
aes(x=factor(Year), y=Avg_Effort_in_Hrs,
group=level,
shape=level,
color=Level)) +
#geom_line() +
geom_point(na.rm = TRUE,color="darkred", size=3) +
scale_shape_manual(values=seq(0,48)) + ## because level 48 discrete values
scale_x_discrete("Year") +
scale_y_continuous("Avg_Effort_in_Hrs",breaks = seq(min(Avg_Effort_in_Hrs),max(Avg_Effort_in_Hrs),8)) +
facet_grid(.~Priority )
dev.off()
Below is for Total_efforts_in_hrs
png(file="mygraphic_1.png",width=900,height=850)
ggplot(data=data,
aes(x=factor(Year), y=Avg_Effort_in_Hrs,
group=level,
shape=level,
color=Level)) +
#geom_line() +
geom_point(na.rm = TRUE,color="darkred", size=3) +
scale_shape_manual(values=seq(0,48)) + ## because level has 48 discrete values
scale_x_discrete("Year") +
scale_y_continuous("Avg_Effort_in_Hrs",breaks = seq(min(Avg_Effort_in_Hrs),max(Avg_Effort_in_Hrs),8)) +
facet_grid(.~Priority )
dev.off()
Could anyone please tell me how do I solve this issue and make my plot more visible and easy to interpret? Is any other better way to plot as per my requirement?