I've got a file containing several channels of data. The file is sampled at a base rate, and each channel is sampled at that base rate divided by some number -- it seems to always be a power of 2, though I don't think that's important.
So, if I have channels a, b, and c, sampled at divders of 1, 2, and 4, my stream will look like:
a0 b0 c0 a1 a2 b1 a3 a4 b2 c1 a5 ...
For added fun, the channels can independently be floats or ints (though I know for each one), and the data stream does not necessarily end on a power of 2: the example stream would be valid without further extension. The values are sometimes big and sometimes little-endian, though I know what I'm dealing with up-front.
I've got code that properly unpacks these and fills numpy arrays with the correct values, but it's slow: it looks something like (hope I'm not glossing over too much; just giving an idea of the algorithm):
for sample_num in range(total_samples):
channels_to_sample = [ch for ch in all_channels if ch.samples_for(sample_num)]
format_str = ... # build format string from channels_to_sample
data = struct.unpack( my_file.read( ... ) ) # read and unpack the data
# iterate over data tuple and put values in channels_to_sample
for val, ch in zip(data, channels_to_sample):
ch.data[sample_num / ch.divider] = val
And it's slow -- a few seconds to read a 20MB file on my laptop. Profiler tells me I'm spending a bunch of time in Channel#samples_for()
-- which makes sense; there's a bit of conditional logic there.
My brain feels like there's a way to do this in one fell swoop instead of nesting loops -- maybe using indexing tricks to read the bytes I want into each array? The idea of building one massive, insane format string also seems like a questionable road to go down.
Update
Thanks to those who responded. For what it's worth, the numpy indexing trick reduced the time required to read my test data from about 10 second to about 0.2 seconds, for a speedup of 50x.