Since this link only describes the variety of predictions based on learning approaches, I want to find out of curiosity why TensorFlow computations slightly vary.
import tensorflow as tf
sess = tf.Session() # TensorFlow session
var1 = tf.placeholder(tf.float32) # one placeholder
var2 = tf.placeholder(tf.float32) # another one
addition_node = var1 + var2 # Variable Addition Node
array = sess.run(addition_node, {var1: [1.1, 2.2, 3.3], var2:[1,1,1]}) # Array with values
print(array)
Expected ouput:
[ 2.1000000 3.20000000 4.30000000]
Actual output:
[ 2.0999999 3.20000005 4.30000019]