I have three equations in three unknowns that I would like to solve.
I am specifying the equations with symbolic toolbox
. I know I can use solve
function to ask matlab to find me a numeric solution. However, with 3 equations in 3 unknowns, matlab should be able to find an analytical solution (fsolve
). I am just not sure how to change the code so that I can use fsolve
instead of solve
.
Below my code:
clear all
syms Kl Kh alpha nu w phi delta P beta zh zl Ezh Ezl
nu1 = (1/(1-nu));
f1 = ((zl * (Kl^alpha))^nu1 + (zh * (Kh^alpha))^nu1) * nu^(nu*nu1) * (w^(-nu*nu1)) - w/phi + delta*(Kl + Kh)*P
f2 = Kh - (( (1-beta*(1-delta))*P * (w^(nu1*nu))*(nu^(nu*nu1)) ) / (beta*alpha* (Ezh)^nu1) )^((1-nu)/(alpha+nu-1))
f3 = Kl - (( (1-beta*(1-delta))*P * (w^(nu1*nu))*(nu^(nu*nu1)) ) / (beta*alpha* (Ezl)^nu1) )^((1-nu)/(alpha+nu-1))
f1 = subs(f1, {alpha, beta, nu, phi,delta, zh, zl, Ezh, Ezl, P}, {0.27, 0.96, 0.60, 2.15,0.065,1.11687642219068,0.895354204038589,1.07811003137331,0.934120594855956, 0.95})
f2 = subs(f2, {alpha, beta, nu, phi,delta, zh, zl, Ezh, Ezl, P}, {0.27, 0.96, 0.60, 2.15,0.065,1.11687642219068,0.895354204038589,1.07811003137331,0.934120594855956, 0.95})
f3 = subs(f3, {alpha, beta, nu, phi,delta, zh, zl, Ezh, Ezl, P}, {0.27, 0.96, 0.60, 2.15,0.065,1.11687642219068,0.895354204038589,1.07811003137331,0.934120594855956, 0.95})
S = solve([f1 == 0, f2 == 0, f3 == 0],...
[w, Kh, Kl], 'ReturnConditions', true);