I have the following dataset
client_id <- c("A", "A", "B", "B", "B", "B", "B", "A", "A", "B", "B")
value <- c(10, 35, 20, 30, 50, 40, 30, 40, 30, 40, 10)
period_30 <- c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)
period_60 <- c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)
sign <- c("D", "D", "D", "D", "C", "C", "C", "D", "D", "D", "D")
data <- data.frame(client_id, value, period_30, period_60, sign)
I can use this code to count the number of different splits per given period with the code below:
library(data.table)
test<- dcast(setDT(data), client_id ~ paste0("period_30", sign), value.var = "period_30", sum)
But I would like to also calculate the value as per the different splits.
The expected outcome would look like this:
client_id av.value_period_30_sign_D av.value_period_60_sign_D av.value_period_30_sign_C av.value_period_30_sign_D
A 34.16667 NaN NaN NaN
B 30.00000 34.16667 NaN 27.50000
And then, it should be extendable to additional splits, like average value of sign X, of type X in period 1.
I am not sure if the desired output is doable with this approach. But I was looking at the fun.aggregate
argument. Perhaps it could be used in combination with multiple value.var
arguments?
Update: Joel's code answers the first part of the question.
client_id sign period_30 period_60
A D 34.16667 34.16667
B D 30.00000 34.16667
B C NaN 27.50000
But how do I transpose the variables and assign the names as per the splits automatically?