With a csv file laid out like this
dtime,Ask,Bid,AskVolume,BidVolume
2003-08-04 00:01:06.430000,1.93273,1.93233,2400000,5100000
2003-08-04 00:01:15.419000,1.93256,1.93211,21900000,4000000
2003-08-04 00:01:18.298000,1.93240,1.93220,18700001,7600000
2003-08-04 00:01:24.950000,1.93264,1.93234,800000,600000
2003-08-04 00:01:26.073000,1.93284,1.93244,2800000,800000
2003-08-04 00:01:29.340000,1.93286,1.93246,7100000,2400000
2003-08-04 00:01:50.452000,1.93278,1.93258,4000000,4800000
2003-08-04 00:01:56.979000,1.93294,1.93244,22600000,13500000
2003-08-04 00:02:20.078000,1.93248,1.93238,3200000,5600000
Using the following code:
import sys
import pandas as pd
import numpy as np
import json
import psycopg2 as pg
import pandas.io.sql as psql
import dask
import dask.dataframe as dd
import datetime as dt
from sklearn.cluster import MeanShift, estimate_bandwidth
from sklearn.externals.joblib import parallel
def parse_dates(df):
return pd.to_datetime(df['dtime'], format = '%Y-%m-%d %H:%M:%S.%f')
def main():
meta = ('time', pd.Timestamp)
dask.set_options(get=dask.multiprocessing.get)
print (dt.datetime.now().strftime("%A, %d. %B %Y %I:%M:%S%p"),"Doing Start of Processing CSV")
df = dd.read_csv('/zdb1/trading/tick_data/GBPJPY.csv', sep=',', names=['dtime', 'Ask', 'Bid', 'AskVolume', 'BidVolume'],)
print (dt.datetime.now().strftime("%A, %d. %B %Y %I:%M:%S%p"),"Done...reading CSV and above datetime")
df.map_partitions(parse_dates, meta=meta).compute()
print (dt.datetime.now().strftime("%A, %d. %B %Y %I:%M:%S%p"),"Done...finished datetime index above grouped")
grouped_data = df.dropna()
ticks_data = grouped_data['Ask'].resample('24H').ohlc()
print (dt.datetime.now().strftime("%A, %d. %B %Y %I:%M:%S%p"),"Done...grouped_data.resample")
sell_data = grouped_data.as_matrix(columns=['Ask']).compute()
print (dt.datetime.now().strftime("%A, %d. %B %Y %I:%M:%S%p"),"Done...grouped_data.as_matrix")
bandwidth = estimate_bandwidth(sell_data, quantile=0.1, n_samples=100).compute()
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True, n_jobs=-1)
print (dt.datetime.now().strftime("%A, %d. %B %Y %I:%M:%S%p"),"Done...MeanShift setup")
ms.fit(sell_data).compute()
print (dt.datetime.now().strftime("%A, %d. %B %Y %I:%M:%S%p"),"Done...MeanShift fit")
ml_results = []
for k in range(len(np.unique(ms.labels_))):
my_members = ms.labels_ == k
values = sell_data[my_members, 0]
ml_results.append(min(values))
ml_results.append(max(values))
print (dt.datetime.now().strftime("%A, %d. %B %Y %I:%M:%S%p"),"Done...MeanShift for k")
ticks_data.to_json('ticks.json', date_format='iso', orient='index')
print (dt.datetime.now().strftime("%A, %d. %B %Y %I:%M:%S%p"),"Done...ticks_data.to_json")
with open('ml_results.json', 'w') as f:
f.write(json.dumps(ml_results))
print (dt.datetime.now().strftime("%A, %d. %B %Y %I:%M:%S%p"),"Done...Closing all connections")
if __name__ == "__main__":
main()
I get date error and I do not understand why. Maybe someone would be kind and point out the error and how to fix it where the code would run! Something about dask I am not understanding here.
# clear ; python3.5 wtf.py
Sunday, 12. February 2017 08:36:51PM Doing Start of Processing CSV
Sunday, 12. February 2017 08:36:53PM Done...reading CSV and above datetime
/usr/local/lib/python3.5/site-packages/dask/async.py:245: DtypeWarning: Columns (1,2,3,4) have mixed types. Specify dtype option on import or set low_memory=False.
return [_execute_task(a, cache) for a in arg]
Traceback (most recent call last):
File "wtf.py", line 56, in <module>
main()
File "wtf.py", line 22, in main
df.map_partitions(parse_dates, meta=meta).compute()
File "/usr/local/lib/python3.5/site-packages/dask/base.py", line 79, in compute
return compute(self, **kwargs)[0]
File "/usr/local/lib/python3.5/site-packages/dask/base.py", line 179, in compute
results = get(dsk, keys, **kwargs)
File "/usr/local/lib/python3.5/site-packages/dask/multiprocessing.py", line 86, in get
dumps=dumps, loads=loads, **kwargs)
File "/usr/local/lib/python3.5/site-packages/dask/async.py", line 493, in get_async
raise(remote_exception(res, tb))
dask.async.ValueError: time data 'dtime' doesn't match format specified
Traceback
---------
File "/usr/local/lib/python3.5/site-packages/dask/async.py", line 268, in execute_task
result = _execute_task(task, data)
File "/usr/local/lib/python3.5/site-packages/dask/async.py", line 249, in _execute_task
return func(*args2)
File "/usr/local/lib/python3.5/site-packages/dask/dataframe/core.py", line 3013, in apply_and_enforce
df = func(*args, **kwargs)
File "wtf.py", line 14, in parse_dates
return pd.to_datetime(df['dtime'], format = '%Y-%m-%d %H:%M:%S.%f')
File "/usr/local/lib/python3.5/site-packages/pandas/util/decorators.py", line 91, in wrapper
return func(*args, **kwargs)
File "/usr/local/lib/python3.5/site-packages/pandas/tseries/tools.py", line 421, in to_datetime
values = _convert_listlike(arg._values, False, format)
File "/usr/local/lib/python3.5/site-packages/pandas/tseries/tools.py", line 413, in _convert_listlike
raise e
File "/usr/local/lib/python3.5/site-packages/pandas/tseries/tools.py", line 401, in _convert_listlike
require_iso8601=require_iso8601
File "pandas/tslib.pyx", line 2374, in pandas.tslib.array_to_datetime (pandas/tslib.c:44175)
File "pandas/tslib.pyx", line 2503, in pandas.tslib.array_to_datetime (pandas/tslib.c:42192)
Any ideas on what is wrong here? Works fine if pandas but I cannot make it work with dask. I cannot figure out how to set the timestamp in dask for primary index!
Smaller code section of problem:
def main():
dask.set_options(get=dask.multiprocessing.get)
print (dt.datetime.now().strftime("%A, %d. %B %Y %I:%M:%S%p"),"Doing Start of Processing CSV")
df = dd.read_csv('/zdb1/trading/tick_data/GBPJPY.csv', sep=',', names=['dtime', 'Ask', 'Bid', 'AskVolume', 'BidVolume'],)
print (dt.datetime.now().strftime("%A, %d. %B %Y %I:%M:%S%p"),"Done...reading CSV and above resample")
grouped_data = df.dropna()
ticks_data = grouped_data['Ask'].resample('24H').ohlc()
print (dt.datetime.now().strftime("%A, %d. %B %Y %I:%M:%S%p"),"Done...grouped_data.resample")
sell_data = grouped_data.as_matrix(columns=['Ask']).compute()
print (dt.datetime.now().strftime("%A, %d. %B %Y %I:%M:%S%p"),"Done...grouped_data.as_matrix")
if __name__ == "__main__":
main()
With the following error:
Monday, 13. February 2017 10:50:40AM Doing Start of Processing CSV
Monday, 13. February 2017 10:50:41AM Done...reading CSV and above resample
Traceback (most recent call last):
File "wtfs.py", line 26, in <module>
main()
File "wtfs.py", line 19, in main
ticks_data = grouped_data['Ask'].resample('24H').ohlc()
File "/usr/local/lib/python3.5/site-packages/dask/dataframe/core.py", line 1415, in resample
return _resample(self, rule, how=how, closed=closed, label=label)
File "/usr/local/lib/python3.5/site-packages/dask/dataframe/tseries/resample.py", line 22, in _resample
resampler = Resampler(obj, rule, **kwargs)
File "/usr/local/lib/python3.5/site-packages/dask/dataframe/tseries/resample.py", line 86, in __init__
raise ValueError(msg)
ValueError: Can only resample dataframes with known divisions
See dask.pydata.io/en/latest/dataframe-partitions.html for more information.
In pandas, it works fine. When I go down the divisions of trying to split up the csv I run into timestamp issue so I haft to find a way to set the index on timestamp like pandas dose in order to solve it. Following is the pandas' code but what would be the same in dask???:
pandas.read_csv(filename, parse_dates=[0], index_col=0, names='Date_Time', 'Ask', 'Bid'], date_parser=lambda x: pandas.to_datetime(x, format="%Y-%m-%d %H:%M:%S.%f"))
Dask does not support on read of csv to parse timestamp and set the timestamp to index! Where my problem is and I can not figure out how to make dask work!