1

I have a dataset like this:

CASE_ID = c("C1","C1", "C2","C2", "C2", "C3", "C4") 
PERSON_ID = c(1,0,7,8,1,20,7) 
PERSON_DIVISION = c("Zone 1", "NA", "Zone 1", "Zone 3", "Zone 1", "Zone 5", "Zone 1") 
df <- data.frame(CASE_ID, PERSON_ID, PERSON_DIVISION)  
df

That results in:

CASE_ID PERSON_ID PERSON_DIVISION
1      C1         1          Zone 1
2      C1         0              NA
3      C2         7          Zone 1
4      C2         8          Zone 3
5      C2         1          Zone 1
6      C3        20          Zone 5
7      C4         7          Zone 1

And I want to transform it in:

CASE_ID P1_ID  P2_ID  P3_ID  P1_Division  P2_Division   P3_Division
1       1       0     NA        Zone 1      NA           NA
2       7       8     1         Zone 1      Zone 3      Zone 1
3       20      NA    NA        Zone 5      NA          NA
4       7       NA    NA        Zone 1      NA          NA

My approach so far has been to melt the data and laters Dcast:

e <- melt(df)

dcast(e, CASE_ID  ~ PERSON_DIVISION + variable)

But I am not getting the desired output, instead I am getting:

CASE_ID NA_PERSON_ID Zone 1_PERSON_ID Zone 3_PERSON_ID Zone 5_PERSON_ID
 1      C1            1                1                0                0
 2      C2            0                2                1                0
 3      C3            0                0                0                1
 4      C4            0                1                0                0
Uwe
  • 41,420
  • 11
  • 90
  • 134
Natalia P
  • 97
  • 1
  • 7

1 Answers1

1

There are two issues here:

  1. Your data is already in long format but you have two value columns. The recent versions of data.table support multiple value vars in dcast().
  2. You need unique row ids within each group. Otherwise, dcast() will try to aggregate duplicates (using length() by default which explains the output you've got).

Please, try

library(data.table)   # version 1.10.4 used here
# coerce to data.table, add unique row numbers for each group
setDT(df)[, rn := rowid(CASE_ID)]
# dcast with multiple value vars
dcast(df, CASE_ID ~ rn, value.var = list("PERSON_ID", "PERSON_DIVISION"))
#   CASE_ID PERSON_ID_1 PERSON_ID_2 PERSON_ID_3 PERSON_DIVISION_1 PERSON_DIVISION_2 PERSON_DIVISION_3
#1:      C1           1           0          NA            Zone 1                NA                NA
#2:      C2           7           8           1            Zone 1            Zone 3            Zone 1
#3:      C3          20          NA          NA            Zone 5                NA                NA
#4:      C4           7          NA          NA            Zone 1                NA                NA

This can be written more concisely as a one-liner:

dcast(setDT(df), CASE_ID ~ rowid(CASE_ID), value.var = list("PERSON_ID", "PERSON_DIVISION"))
Uwe
  • 41,420
  • 11
  • 90
  • 134