I have the following code, with which I intend to read and plot many curves from many different files. The "reading and plotting" is already working pretty good.
The problem is that now I want to make a fitting for all those curves in the same plot. This code already manages to fit the curves, but the output is all in one array and I can not plot it, since I could not separate it.
#!/usr/bin/python
import matplotlib.pyplot as plt
from numpy import exp
from lmfit import Model
def read_files(arquivo):
x = []
y = []
abscurrent = []
time = []
data = open(arquivo, 'r')
headers = data.readlines()[60:]
for line in headers:
line = line.strip()
X, Y, ABS, T = line.split('\t')
x.append(X)
y.append(Y)
abscurrent.append(ABS)
time.append(T)
data.close()
def J(x, j, n):
return j*((exp((1.6e-19*x)/(n*1.38e-23*333)))-1)
gmod = Model(J)
result = gmod.fit(abscurrent, x=x, j=10e-10, n=1)
return x, y, abscurrent, time
print(result.fit_report())
When I ask to print the "file" result.best_fit
, which in the lmfit would give the best fit for that curve, I get 12 times this result (I have 12 curves) , with different values:
- Adding parameter "j"
- Adding parameter "n"
[ 4.30626925e-17 3.25367918e-14 9.60736218e-14 2.20310475e-13
4.63245638e-13 9.38169958e-13 1.86480698e-12 3.67881758e-12
7.22634738e-12 1.41635088e-11 2.77290634e-11 5.42490983e-11
1.06108942e-10 2.07520542e-10 4.05768903e-10 7.93323537e-10
1.55126521e-09 3.03311029e-09 5.93085363e-09 1.16032067e-08
2.26884736e-08 4.43641560e-08 8.67362753e-08 1.69617697e-07
3.31685858e-07 6.48478168e-07]
- Adding parameter "j"
- Adding parameter "n"
[ 1.43571772e-16 1.00037588e-13 2.92349492e-13 6.62623404e-13
This means that the code is calculating the fit correctly, I just have to separate this output somehow in order to plot each of them with the their curve. Each set of values between []
is what I want to separate in a way I can plot it.