Two's complement negative numbers always have a '1' in their high bit.
You can convert from negative to positive (and vice versa) by converting from FF -> 00 -> 01. That is, invert the bits, add 1. (01 -> FE -> FF also works: invert the bits, add 1)
A positive number can be represented if the highest set bit in the number is within your range. (nbits - 1: 7 bits for an 8 bit signed char, etc.)
I'm not sure if your constraints allow you to use arrays. They would speed up some things but can be replaced with loops or if statements.
Anyway, if 1 << (NUM_INT_BITS-1) is set on your input, then it's negative.
Invert, add one.
Now, consider 0. Zero is a constant, and it's always the same no matter how many bits. But if you invert 0, you get "all the bits" which changes by architecture. So, ALL_BITS = ~0.
If you want to know if a positive number can be represented in 2 bits, check to see if any bits greater than or equal to bit 2 are set. Example:
two_bits = 0b00000011
any_other_bits = ~two_bits # Result: 0b11...11100
if positive_number & any_other_bits
this number is too fat for these bits!
But how do you know what ~two_bits
should be? Well, it's "all set bits except the bottom however-many". And you can construct that by starting with "all set bits" and shifting them upwards (aka, "left") however-many places:
any_other_bits = ~0 << 2 # where "2" is the number of bits to check
All together now:
if (val & ((unsigned)INT_MAX + 1))
val = ~val + 1;
mask = ~0 << bits;
too_wide = val & mask;
return !too_wide;