I am training a deep neural net using keras. One of the scores is called val_acc. I get like a 70% val_acc. How do I know if this is good or bad? The neural net is a binary classifier, so I am trying to predict a 1 or a 0. The data itself is about 65% 0's and 35% 1's. Is my 70% val_acc any good?
1 Answers
Accuracy is not always the right metric for the evaluation of a classifier. For example, it could be more important for you to classify the 1s more correctly than 0s (for example fraud detection) or the other way. So you may be interested to have a classifier with higher precision (specificity) or recall (sensitivity). In other words, false positives may be more expensive for you than false negatives. If you have some idea about the costs of misclassifications (e.g. for FPs & FNs) then you can precisely compute the specific threshold that will be optimal (instead of default 0.5) for 0-1 classification. You can use ROC curves and AUC to find performance of your classifier as well (the higher AUC the better). Finally you may want to consider kappa statistics to find how useful / effective your classifier is.

- 21,482
- 2
- 51
- 63