I've taken the relevant parts of the function:
def solution(A, B):
for i in xrange(3, len(A) + 1): # replaced ways for clarity
# ...
for i in xrange(len(A)):
# ...
return result
Observations:
A
is an iterable object (e.g. a list
)
- You're iterating over the elements of
A
in sequence
- The behavior of your function depends on the number of elements in
A
, making it O(A)
- You're iterating over
A
twice, meaning 2 O(A) -> O(A)
On point 4, since 2 is a constant factor, 2 O(A) is still in O(A).
I think the page is not correct in its measurement. Had the loops been nested, then it would've been O(A²), but the loops are not nested.
This short sample is O(N²):
def process_list(my_list):
for i in range(0, len(my_list)):
for j in range(0, len(my_list)):
# do something with my_list[i] and my_list[j]
I've not seen the code the page is using to 'detect' the time complexity of the code, but my guess is that the page is counting the number of loops you're using without understanding much of the actual structure of the code.
EDIT1:
Note that, based on this answer, the time complexity of the len
function is actually O(1), not O(N), so the page is not incorrectly trying to count its use for the time-complexity. If it were doing that, it would've incorrectly claimed a larger order of growth because it's used 4 separate times.
EDIT2:
As @PaulHankin notes, asymptotic analysis also depends on what's considered a "basic operation". In my analysis, I've counted additions and assignments as "basic operations" by using the uniform cost method, not the logarithmic cost method, which I did not mention at first.
Most of the time simple arithmetic operations are always treated as basic operations. This is what I see most commonly being done, unless the algorithm being analysed is for a basic operation itself (e.g. time complexity of a multiplication function), which is not the case here.
The only reason why we have different results appears to be this distinction. I think we're both correct.
EDIT3:
While an algorithm in O(N) is also in O(N²), I think it's reasonable to state that the code is still in O(N) b/c, at the level of abstraction we're using, the computational steps that seem more relevant (i.e. are more influential) are in the loop as a function of the size of the input iterable A
, not the number of bits being used to represent each value.
Consider the following algorithm to compute an:
def function(a, n):
r = 1
for i in range(0, n):
r *= a
return r
Under the uniform cost method, this is in O(N), because the loop is executed n times, but under logarithmic cost method, the algorithm above turns out to be in O(N²) instead due to the time complexity of the multiplication at line r *= a
being in O(N), since the number of bits to represent each number is dependent on the size of the number itself.