For experimental purposes, I train the SVM model as follows,
clf = SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=True)
scores = cross_val_score(clf,train_feature,train_label,cv=3)
print(scores)
The printed result looks like as follows
Warning: using -h 0 may be faster
optimization finished, #iter = 2182
obj = -794.208203, rho = 1.303717
nSV = 1401, nBSV = 992
Total nSV = 1401
The cross-validation score is like
[LibSVM][LibSVM][LibSVM][ 0.68838493 0.6887449 0.75864138]
I think nSV
represents the number of support vectors. Is that right? Then what do nBSV
and rho
represent? How can I know whether these cross-validations score are a good indicator for the model performance?