i ran into the same problem, and following this answer now use SparkR:::callJMethod
to transform the probability DenseVector
(which R cannot deserialize) to an Array
(which R reads as a List
). It's not very elegant or fast, but it does the job:
denseVectorToArray <- function(dv) {
SparkR:::callJMethod(dv, "toArray")
}
e.g.:
start your spark session
#library(SparkR)
#sparkR.session(master = "local")
generate toy data
data <- data.frame(clicked = base::sample(c(0,1),100,replace=TRUE),
someString = base::sample(c("this", "that"),
100, replace=TRUE),
stringsAsFactors=FALSE)
trainidxs <- base::sample(nrow(data), nrow(data)*0.7)
traindf <- as.DataFrame(data[trainidxs,])
testdf <- as.DataFrame(data[-trainidxs,])
train a random forest and run predictions:
rf <- spark.randomForest(traindf,
clicked~.,
type = "classification",
maxDepth = 2,
maxBins = 2,
numTrees = 100)
predictions <- predict(rf, testdf)
collect your predictions:
collected = SparkR::collect(predictions)
now extract the probabilities:
collected$probabilities <- lapply(collected$probability, function(x) denseVectorToArray(x))
str(probs)
ofcourse, the function wrapper around SparkR:::callJMethod
is a bit of an overkill. You can also use it directly, e.g. with dplyr:
withprobs = collected %>%
rowwise() %>%
mutate("probabilities" = list(SparkR:::callJMethod(probability,"toArray"))) %>%
mutate("prob0" = probabilities[[1]], "prob1" = probabilities[[2]])