I am working on a classification then object detection with Keras and Python. I have classified cats/dogs with 80%+ accuracy, Im ok with the current result for now. My question is how do I detect cat or dog from an input image? I'm completely confused. I want to use my own heights and not pretrained ones from internet.
Here is my code currently:
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
#########################################################################################################
#VALUES
# dimensions of our images.
img_width, img_height = 150, 150
train_data_dir = 'data/train'
validation_data_dir = 'data/validation'
nb_train_samples = 2000 #1000 cats/dogs
nb_validation_samples = 800 #400cats/dogs
nb_epoch = 50
#########################################################################################################
#MODEL
model = Sequential()
model.add(Convolution2D(32, 3, 3, input_shape=(3, img_width, img_height)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
##########################################################################################################
#TEST AUGMENTATION
img = load_img('data/train/cats/cat.0.jpg') # this is a PIL image
x = img_to_array(img) # this is a Numpy array with shape (3, 150, 150)
x = x.reshape((1,) + x.shape) # this is a Numpy array with shape (1, 3, 150, 150)
# the .flow() command below generates batches of randomly transformed images
# and saves the results to the `preview/` directory
i = 0
for batch in train_datagen.flow(x, batch_size=1,
save_to_dir='data/TEST AUGMENTATION', save_prefix='cat', save_format='jpeg'):
i += 1
if i > 20:
break # otherwise the generator would loop indefinitely
##########################################################################################################
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1./255)
#PREPARE TRAINING DATA
train_generator = train_datagen.flow_from_directory(
train_data_dir, #data/train
target_size=(img_width, img_height), #RESIZE to 150/150
batch_size=32,
class_mode='binary') #since we are using binarycrosentropy need binary labels
#PREPARE VALIDATION DATA
validation_generator = test_datagen.flow_from_directory(
validation_data_dir, #data/validation
target_size=(img_width, img_height), #RESIZE 150/150
batch_size=32,
class_mode='binary')
#START model.fit
history =model.fit_generator(
train_generator, #train data
samples_per_epoch=nb_train_samples,
nb_epoch=nb_epoch,
validation_data=validation_generator, #validation data
nb_val_samples=nb_validation_samples)
model.save_weights('savedweights.h5')
# list all data in history
print(history.history.keys())
#ACC VS VAL_ACC
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy ACC VS VAL_ACC')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
#LOSS VS VAL_LOSS
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss LOSS vs VAL_LOSS')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
model.load_weights('first_try.h5')
So now since i classified cat and dog, how and what do I need to do to input an image and go through it to find cat or a dog in it with a bounding box? I'm completely new to this nd not even sure if I'm tackling this in a correct way? Thank you.
UPDATE Hi, Sorry to post results so late, was unable to work on this for few days. I am importing an image and reshaping it to 1,3,150,150 shape as 150,150 shape brings error:
Exception: Error when checking : expected convolution2d_input_1 to have 4 dimensions, but got array with shape (150L, 150L)
Importing image:
#load test image
img=load_img('data/prediction/cat.155.jpg')
#reshape to 1,3,150,150
img = np.arange(1* 150 * 150).reshape((1,3,150, 150))
#check shape
print(img.shape)
Then I have changed def predict_function(x) to:
def predict_function(x):
# example of prediction function for simplicity, you
# should probably use `return model.predict(x)`
# random.seed(x[0][0])
# return random.random()
return model.predict(img)
Now when I run:
best_box = get_best_bounding_box(img, predict_function)
print('best bounding box %r' % (best_box, ))
I get output as best bounding box: None
So I ran just:
model.predict(img)
And get the following out:
model.predict(img)
Out[54]: array([[ 0.]], dtype=float32)
So it is not checking at all if its a cat or a dog... Any ideas?
NOTE: when def predict)function(x) is using:
random.seed(x[0][0])
return random.random()
I do get the output as , it check boxes and gives the best one.