I have to postprocess data from a parametric analysis which has as output a 1D-array with the results. I would like to reshape this 1D array into a multidimensional matrix which has the dimensions of my investigated parameters (to be in the right order), and those dimensions may vary in number.
I could came up with a function based on for-loops, but the problem is that with very large arrays I run out of RAM. I am perfectly aware that this is not the smartest way to do this. I was wondering if there is a smarter way to manipulate such a large array and to do the same job as my function does.
function [Tensor, n_dimensions]=reshape_array(Data,ndim)
n_dimensions=length(ndim);
n_elements=prod(ndim);
reshape_string=[];
for i=n_dimensions:-1:1
if i==1
reshape_string=strcat(reshape_string, ' ndim(', num2str(i) , ')])');
elseif i== n_dimensions
reshape_string=strcat(reshape_string, ' [ndim(', num2str(i) , ')');
else
reshape_string=strcat(reshape_string, ' ndim(', num2str(i) , ') ');
end
end
invert_string=[];
for i=1:n_dimensions
if i==1
invert_string=strcat(invert_string, 'ndim(', num2str(i) , '),');
elseif i== n_dimensions
invert_string=strcat(invert_string, ' ndim(', num2str(i) , ')');
else
invert_string=strcat(invert_string, ' ndim(', num2str(i) , '),');
end
end
reshape_statement=strcat('reshape(Data,',reshape_string);
invert_statement=strcat('zeros(',invert_string,');');
Tens1=eval(reshape_statement);
Tens2=eval(invert_statement);
nLoops=length(ndim);
str = '';
str_dim_tens='';
str_dim_indeces='';
for i=1:nLoops
str = strcat(sprintf('%s \n for i%d=1:',str,i), sprintf('%d',ndim(i)));
if i<nLoops
str_dim_tens=strcat(str_dim_tens,'i',num2str(i),',');
else
str_dim_tens=strcat(str_dim_tens,'i',num2str(i));
end
end
for i=nLoops:-1:1
if i~=1
str_dim_indeces=strcat(str_dim_indeces,'i',num2str(i),',');
else
str_dim_indeces=strcat(str_dim_indeces,'i',num2str(i));
end
end
str = strcat(sprintf('%s \n Tens2(%s)=Tens1(%s);',str,str_dim_tens,str_dim_indeces));
for i=1:nLoops
str = sprintf('%s \n end',str);
end
eval(str)
Tensor=Tens2;
end
as an example,
ndim=[2 3];
Data=1:2*3
[Tensor, n_dimensions]=reshape_array(Data,ndim);
n_dimensions =
2
Tensor =
1 2 3
4 5 6
I would work with more dimensions (e.g. minimum 4) and Data arrays with millions of elements. An example could be M(10,10,10,300000) This is why I was looking for the least computationally expensive method to do the job.
Thank you for your help!