I'm making a project that require send data from one microcontroller to another via wireless (I'm going to use 433Mhz RF modules or 2.4Ghz, didn't decide it yet). Specifically, I'm making a joystick which control 4 dc motors. So my question is: When I write the code, should I put the command to accelerate 'x' motor into the receiver's microcontroller (the board that control the motors) or into the transmitter's microcontroller (the joystick's board)? For example, if I put the joystick to the left to accelerate motor 3 and 4, where would I wrote this code? I'm doing this project in arduino (ATmega328 with arduino bootloader).
-
1I think you want the joystick to control the motor. Joystick move => accelerate 'x' on transmitter MCU => wireless => receiver MCU receives "accelerate X" command => accelerate motor. If this is right - what is the question? – i486 Jan 18 '17 at 14:35
-
Should I put the command to accelerate the motor into the joystick MCU or the Receiver MCU? The receiver's MCU will only get the order and pass direct to the motor? I know this is a huge subject to explain but I'm lost where I should start to research about this. – Youssef El Halal Jan 18 '17 at 14:47
-
And yes, what you say is exactly what I want to do. – Youssef El Halal Jan 18 '17 at 14:48
-
1If "yes" - then I don't see how you finish the job when you cannot understand on what side to put accelerate command. It is like a pilot asking how to turn on the jet engine. – i486 Jan 18 '17 at 15:05
-
Where I start to research? I can program, I just don't know how the communication process works. – Youssef El Halal Jan 18 '17 at 15:16
-
Read docs for RF module. Try to find example for transmitter and receiver side. – i486 Jan 18 '17 at 15:34
-
The transmitter "knows" the joystick, but not the motors; the receiver knows the motors, but not the joystick. Let the transmitter send what it knows, i.e. the values in the range -100..100 for each axis, and let the receiver interpret those values as appropriate for the motors. Tomorrow, you will be able to design another transmitter with a gas pedal and a steer instead of a joystick. – linuxfan says Reinstate Monica Jan 19 '17 at 08:11
1 Answers
Well this is most definitely a "primarily opinion based" question and may very well get closed...but...
This is your design, you need to design it. There isnt a wrong answer in this case, you can have the joystick board simply pass the joystick switch state or analog state depending on what kind they are...OR...you can have the joystick board using timing and how long the joystick is held in a position and perhaps compute what you think the devices position should be and just pass that (you need to rotate m steps this way and n steps that way). Or depending on your overall system design could come up with other solutions to balance the load between the microcontrollers. I assume what you are really wanting to do here is "simply" use the wireless and the extra mcu as a way to have the joystick not wired. If the joystick were wired and you did it with one mcu and these are switch based (not analog resistance) joysticks then that one mcu would simply be reading the switch state at some interval, perhaps debouncing. So then when you add wireless to it you would want the wireless solution to simply pass the same switch state, not in the same register space and not necessarily the same bit positions in whatever data, but just the switch state. As needed you have the added benefit of the joystick mcu can debounce. Also perhaps only send state changes and not have to bother the motor mcu every N units of time.
I tried modules like these recently and was very disappointed, but am considering trying them again or a different vendor/build of them. They should "feel" like a wire for say serial data at some slow rate 4800 baud, 2400 baud, etc. First try I had to do things like constantly send a pattern say the same byte 0xAA, then every so often have a small payload show up in there so search for 0xAA then when you see something else count out so many bytes that is the payload. It went downhill from there when I used separate computers/supplies to send the data as if most of my success although marginal was perhaps through ground noise not actually wireless. They sell tons of these and folks use them so no doubt it was something I did or bought garbage modules, or maybe I shouldnt have bought the ones with antennas, and soldered those on, etc.
I would recommend two things. First get both mcus up and running the application using a wired connection, just some jumper wires. You might have to come back to this as you perhaps change your protocol or baud rate, etc if needed. Perhaps (most likely) you want to send the payload out often even if the data has not changed if the wireless connection is not perfectly reliable, allowing the occasional lost data packet to be handled on the next one. Second learning to use the wireless connection is a separate experiment, the code on both sides should just be working that one problem how to I talk over this interface, no motor drivers no joysticks, just code to talk from one to the other.
Likely a good idea, esp if you dont need to be constantly transmitting, is to design your own packet. Ideally one or more features, a sync pattern and length or a sync pattern and checksum or sync pattern, length and checksum (as well as a payload). So maybe a 0x7E byte as a sync pattern, perhaps you are always going to send 32 bits or 4 bytes of payload so dont need a length and then maybe a checksum of the payload or checksum of the whole thing sync pattern and payload. your reciever then takes in bytes from the uart into a circular buffer basically or not even that just use a very simple state machine, if searching for sync and byte is not 0x7E then discard, if 0x7e then go to payload state with a count of zero, receive the next four bytes (payload) summing them into a checksum as each arrives. after payload the next byte is checksum, if it matches the the whole thing is good pass the payload to the control system to update the switch state and/or just shove it into the global variable that the control system is watching as if it were a direct connection to the joystick switch state.
You can get as complicated or not as you want, but I would never in this kind of a design assume that both sides are always in sync and every N bytes is the N bytes sent in the right position, even if you never drop a byte, this is a one direction communication path so if the receiver comes up while the transmitter is mid payload the receiver comes up in the middle of the payload/packet and is always off in its interpretation of the data. You can do a slip/ppp thing whichever it is and insure the sync pattern is never in the data by adding more work. Or not, I doubt you need to be that complicated as I assume you are likely only sending one or a few bytes of actual data per update.
why I tried the continuous stream as way back the first time i tried products like these, long before they were a buck or so from china on ebay, we had to insure "transition density" you could not string more than a couple bit cells of either state in a row, couldnt have more than say two zeros in a row or two ones in a row basically had to do a biphase-l (manchester II) in software before shoving the bytes into the uart, then undoing it on the other side. Hopefully the hardware does that for you and you dont have to, but push comes to shove you might have to take every byte and only every other bit in the byte is payload the other bit next to it is the inverse might have to send the byte 0x01 (00000001) as (0101010101010110) 0x55 0x56. Hopefully you dont have to do that, it is not much fun.
Your microcontroller development toolbox should include some usb to serial solutions, can get them for a buck or two on ebay from china or from adafruit or sparkfun for 10-15 bucks. The china ones sometimes have a 5v or 3.3v jumper or switch. One way to start with these modules is to hook one to one of these usb to serial breakouts 5V or 3.3 as needed for that rx or tx module. For tx put the uart out (tx) on the data pin, for rx the rx in on the data pin. And then fire up two copies of minicom or whatever dumb terminal program you use, set both to some slow speed like 1200baud, and type in one and see if what you type comes out the other. Hold down a character, U is a good one as with 8n1 it produces a square wave. does that come through clean? what if you slow down both sides? what if you speed up. From simple experiments like that you can start to develop your protocol. If you have a scope (having one is easier these days but can still be pricy, a few hundred bucks, but access to one is pretty important) you can do this even easier, generate the signal either with microcontroller or usb to serial or whatever then look at what shows up on the other side with the scope, how ugly/clean is it? Can you make it better looking by changing the data or by pounding the interface with continuous data.

- 69,149
- 8
- 89
- 168