Yes, in the first example, the wstring created by the call to std::to_wstring only has the scope of the line. After the line executes, it is out of scope and its value is dubious.
In the second example, the wstring is still in scope and valid and so the call to .c_str() works.
No, the other answer is wrong. Look at the implementation of c_str()
. c_str()
returns basically a LPCWSTR
... call it a const WCHAR*
or const wchar_t*
or whatever. However, the return of c_str()
is to an internal pointer of wstring. The problem is that after the line of code executes, the wstring returned from to_wstring()
is not valid and so the the pointer returned by c_str()
is garbage. For fun, try the following code:
//cstr_.cpp
#include <iostream>
#include <string>
using namespace std;
int main(int argc, char* argv)
{
auto temp = to_wstring(1).c_str();
wprintf(L"%s\n", temp);
auto temp2 = to_wstring(1);
wprintf(L"%s\n", temp2.c_str());
wstring ws = to_wstring(1);
auto temp3 = ws.c_str();
wprintf(L"%s\n", temp3);
}
I compiled the above from a VC++ shell prompt with: cl.exe cstr.cpp
If the other answer is correct, then the last line should have garbage or nothing output because according to the other answer, c_str() is a temp. But, if my answer is correct, then it should output 1 (which it does). If all else fails, look at the implementation source code.