I have one netCDF file (.nc) with 16 years(1998 - 2014) worth of daily precipitation (5844 layers). The 3 dimensions are time (size 5844), latitude (size 19) and longitude (size 20) Is there a straightforward approach in R to compute for each rastercell:
- Monthly & yearly average
- A cummulative comparison (e.g. jan-mar compared to the average of all jan-mar)
So far I have:
library(ncdf4)
library(raster)
Rname <- 'F:/extracted_rain.nc'
rainfall <- nc_open(Rname)
readRainfall <- ncvar_get(rainfall, "rain") #"rain" is float name
raster_rainfall <- raster(Rname, varname = "rain") # also tried brick()
asdatadates <- as.Date(rainfall$dim$time$vals/24, origin='1998-01-01') #The time interval is per 24 hours
My first challenge will be the compuatation of monthly averages for each raster cell. I'm not sure how best to proceed while keeping the ultimate goal (cummulative comparison) in mind. How can I easily access only days from a certain month?
raster(readRainfall[,,500])) # doesn't seem like a straightforward approach
Hopefully I made my question clear, a first push in the right direction would be much appreciated. Sample data here