The most straightforward, but not the most optimal, approach is to distribute the sequence elements between threads you have. Ie, if you have 4 threads, thread one will work with n%4 == 0 elements, thread2 with n%4 == 1 elements and so on
public static void main(String ... args) throws InterruptedException {
int threadCount = 4;
int N = 100_000;
PiThread[] threads = new PiThread[threadCount];
for (int i = 0; i < threadCount; i++) {
threads[i] = new PiThread(threadCount, i, N);
threads[i].start();
}
for (int i = 0; i < threadCount; i++) {
threads[i].join();
}
double pi = 0;
for (int i = 0; i < threadCount; i++) {
pi += threads[i].getSum();
}
System.out.print("PI/4 = " + pi);
}
static class PiThread extends Thread {
private final int threadCount;
private final int threadRemainder;
private final int N;
private double sum = 0;
public PiThread(int threadCount, int threadRemainder, int n) {
this.threadCount = threadCount;
this.threadRemainder = threadRemainder;
N = n;
}
@Override
public void run() {
for (int i = 0; i <= N; i++) {
if (i % threadCount == threadRemainder) {
sum += Math.pow(-1, i) / (2 * i + 1);
}
}
}
public double getSum() {
return sum;
}
}
PiThread is more efficient, but arguably harder to read, if the loop is shorter:
public void run() {
for (int i = threadRemainder; i <= N; i += threadCount) {
sum += Math.pow(-1, i) / (2 * i + 1);
}
}
In case you don't want to limit yourself with number of elements in sequence and just by time, you may follow an approach below. But note, that it is still limited with Long.MAX_VALUE and you'll have to use BigIntegers, BigDecimals or any other reasonable approach to improve it
public static volatile boolean running = true;
public static void main(String ... args) throws InterruptedException {
int threadCount = 4;
long timeoutMs = 5_000;
final AtomicLong counter = new AtomicLong(0);
PiThread[] threads = new PiThread[threadCount];
for (int i = 0; i < threadCount; i++) {
threads[i] = new PiThread(counter);
threads[i].start();
}
Thread.sleep(timeoutMs);
running = false;
for (int i = 0; i < threadCount; i++) {
threads[i].join();
}
double sum = 0;
for (int i = 0; i < threadCount; i++) {
sum += threads[i].getSum();
}
System.out.print("counter = " + counter.get());
System.out.print("PI = " + 4*sum);
}
static class PiThread extends Thread {
private AtomicLong counter;
private double sum = 0;
public PiThread(AtomicLong counter) {
this.counter = counter;
}
@Override
public void run() {
long i;
while (running && isValidCounter(i = counter.getAndAdd(1))) {
sum += Math.pow(-1, i) / (2 * i + 1);
}
}
private boolean isValidCounter(long value) {
return value >= 0 && value < Long.MAX_VALUE;
}
public double getSum() {
return sum;
}
}