For your Query :-
Where the boundaries between these sections are defined? Is it in Compiler or OS?
Answer is OS.
There is no universally common addressing scheme for the layout of the .text segment (executable code), .data segment (variables) and other program segments. However, the layout of the program itself is well-formed according to the system (OS) that will execute the program.
How the compiler or OS know which addresses belong to each section? Should we define it anywhere?
I divided your this question into 3 questions :-
About the text (code) and data sections and their limitation?
Text and Data are prepared by the compiler. The requirement for the compiler is to make sure that they are accessible and pack them in the lower portion of address space. The accessible address space will be limited by the hardware, e.g. if the instruction pointer register is 32-bit, then text address space would be 4 GiB.
About Heap Section and limit? Is it the total available RAM memory?
After text and data, the area above that is the heap. With virtual memory, the heap can practically grow up close to the max address space.
Do the stack and the heap have a static size limit?
The final segment in the process address space is the stack. The stack takes the end segment of the address space and it starts from the end and grows down.
Because the heap grows up and the stack grows down, they basically limit each other. Also, because both type of segments are writeable, it wasn't always a violation for one of them to cross the boundary, so you could have buffer or stack overflow. Now there are mechanism to stop them from happening.
There is a set limit for heap (stack) for each process to start with. This limit can be changed at runtime (using brk()/sbrk()). Basically what happens is when the process needs more heap space and it has run out of allocated space, the standard library will issue the call to the OS. The OS will allocate a page, which usually will be manage by user library for the program to use. I.e. if the program wants 1 KiB, the OS will give additional 4 KiB and the library will give 1 KiB to the program and have 3 KiB left for use when the program ask for more next time.
Most of the time the layout will be Text, Data, Heap (grows up), unallocated space and finally Stack (grows down). They all share the same address space.