Suppose a function f: R -> R defined as f(x) = mx + c for some m, c > 0 and x in R. Does f(x) belong to o(x)?
If the answer is "NO", can we conclude that o(x) does not properly contain the set of sub-linear functions?
The reason I'm asking this: It is easy to see that f(x) is sub-linear because f(x1) + f(x2) = mx1 + c + mx2 + c > m(x1+x2) + c = f(x1+x2). But lim x-> infinity f(x)/x = 2. In this sense f(x) is not in o(x). But o(x) represents the set of sub linear functions. That's where my confusion comes from.