I'm working on a project where I have a feature in an image described as a set of X & Y coordinates (5-10 points per feature) which are unique for this feature. I also have a database with thousands of features where each have the same type of descriptor. The result looks like this:
myFeature: (x1,y1), (x2,y2), (x3,y3)...
myDatabase: Feature1: (x1,y1), (x2,y2), (x3,y3)...
Feature2: (x1,y1), (x2,y2), (x3,y3)...
Feature3: (x1,y1), (x2,y2), (x3,y3)...
...
I want to find the best match of myFeature in the features in myDatabase.
What is the fastest way to match these features? Currently I am stepping though each feature in the database and comparing each individual point:
bestScore = 0
for each feature in myDatabase:
score = 0
for each point descriptor in MyFeature:
find minimum distance from the current point to the...
points describing the current feature in the database
if the distance < threshold:
there is a match to the current point in the target feature
score += 1
if score > bestScore:
save feature as new best match
This search works, but clearly it gets painfully slow on large databases. Does anyone know of a faster method to do this type of search, or at least if there is a way to quickly rule out features that clearly won't match the descriptor?