I'm trying to solve a linear programming problem in R
using lpsolve
package.
Here is the problem:
Here is the sample in R for reproducible example:
library("lpSolve")
a <- matrix(c(1,2,5,
1/2,1,3,
1/5,1/3,1),nrow=3,byrow=T)
#
f.obj <- c(1,0,0,0)
f.con <- matrix (c(
1,1,-a[1,2],0, #Contraint 1 for a12
1,-1,a[1,2],0, #Contraint 2 for a12
1,1,0,-a[1,3], #Contraint 1 for a13
1,-1,0,a[1,3], #Contraint 2 for a13
1,0,1,-a[2,3], #Contraint 1 for a23
1,0,-1,a[2,3], #Contraint 2 for a23
0,1,1,1, #Contraint 3
0,1,0,0, #Constraint 4
0,0,1,0, #Constraint 4
0,0,0,1 #Constraint 4
), nrow=10, byrow=TRUE)
f.dir <- c(rep("<=",6), "=",rep(">",3))
f.rhs <- c(rep(1,6),1,rep(0,3))
g <- lp ("max", f.obj, f.con, f.dir, f.rhs)
g$solution
I'm able to solve this manually for a small problem, what if I had a 7 X 7
or a n x n
matrix a
. How would I specify the constraint 1
and 2
, especially I'm struggling to define the constraint as it relates to a[i,j]?
a = matrix(
c(1,4,9,6,6,5,5,
1/4,1,7,5,5,3,4,
1/9,1/7,1,1/5,1/5,1/7,1/5,
1/6,1/5,5,1,1,1/3,1/3,
1/6,1/5,5,1,1,1/3,1/3,
1/5,1/3,7,3,3,1,2,
1/5,1/4,5,3,3,1/2,1
),nrow = 7,byrow =T)
the solution to the above matrix is 0.986 0.501 0.160 0.043 0.060 0.060 0.1 0.075
Any help would be greatly appreciated.