Considering the following random data:
set.seed(123456)
# generate random normal data
x <- rnorm(100, mean = 20, sd = 5)
weights <- 1:100
df1 <- data.frame(x, weights)
#
library(ggplot2)
ggplot(df1, aes(x)) + stat_ecdf()
We can create a general cumulative distribution plot.
But, I want to compare my curve to that from data used 20 years ago. From the paper, I only know that the data is "best modeled by a shifted exponential distribution with an x intercept of 1.1 and a mean of 18"
How can I add such a function to my plot?
+ stat_function(fun=dexp, geom = "line", size=2, col="red", args = (mean=18.1))
but I am not sure how to deal with the shift (x intercept)