I'm not sure what x.d <= delta
means, but I'll just assume it's supposed to be x <= delta
.
You can solve this problem using the projected gradient method or an accelerated projected gradient method (which is just a slight modification of the projected gradient method, which "magically" converges much faster). Here is some python code that shows how to minimize .5|| Ax - b ||^2 subject to the constraint that 0 <= x <= delta using FISTA, which is an accelerated projected gradient method. More details about the projected gradient method and FISTA can be found for example in Boyd's manuscript on proximal algorithms.
import numpy as np
import matplotlib.pyplot as plt
def fista(gradf,proxg,evalf,evalg,x0,params):
# This code does FISTA with line search
maxIter = params['maxIter']
t = params['stepSize'] # Initial step size
showTrigger = params['showTrigger']
increaseFactor = 1.25
decreaseFactor = .5
costs = np.zeros((maxIter,1))
xkm1 = np.copy(x0)
vkm1 = np.copy(x0)
for k in np.arange(1,maxIter+1,dtype = np.double):
costs[k-1] = evalf(xkm1) + evalg(xkm1)
if k % showTrigger == 0:
print "Iteration: " + str(k) + " cost: " + str(costs[k-1])
t = increaseFactor*t
acceptFlag = False
while acceptFlag == False:
if k == 1:
theta = 1
else:
a = tkm1
b = t*(thetakm1**2)
c = -t*(thetakm1**2)
theta = (-b + np.sqrt(b**2 - 4*a*c))/(2*a)
y = (1 - theta)*xkm1 + theta*vkm1
(gradf_y,fy) = gradf(y)
x = proxg(y - t*gradf_y,t)
fx = evalf(x)
if fx <= fy + np.vdot(gradf_y,x - y) + (.5/t)*np.sum((x - y)**2):
acceptFlag = True
else:
t = decreaseFactor*t
tkm1 = t
thetakm1 = theta
vkm1 = xkm1 + (1/theta)*(x - xkm1)
xkm1 = x
return (xkm1,costs)
if __name__ == '__main__':
delta = 5.0
numRows = 300
numCols = 50
A = np.random.randn(numRows,numCols)
ATrans = np.transpose(A)
xTrue = delta*np.random.rand(numCols,1)
b = np.dot(A,xTrue)
noise = .1*np.random.randn(numRows,1)
b = b + noise
def evalf(x):
AxMinusb = np.dot(A, x) - b
val = .5 * np.sum(AxMinusb ** 2)
return val
def gradf(x):
AxMinusb = np.dot(A, x) - b
grad = np.dot(ATrans, AxMinusb)
val = .5 * np.sum(AxMinusb ** 2)
return (grad, val)
def evalg(x):
return 0.0
def proxg(x,t):
return np.maximum(np.minimum(x,delta),0.0)
x0 = np.zeros((numCols,1))
params = {'maxIter': 500, 'stepSize': 1.0, 'showTrigger': 5}
(x,costs) = fista(gradf,proxg,evalf,evalg,x0,params)
plt.figure()
plt.plot(x)
plt.plot(xTrue)
plt.figure()
plt.semilogy(costs)