Comments about your implementation:
A graph is a collection of objects in which some pairs of objects are related. Therefore, your current implementation is one potential way of doing it; you model the objects and the relationship between them.
The advantages of your current implementation are primarily constant lookup time along an edge and generalizability. Lookup time: if you want to access the nth neighbor of node k
, that can be done in constant time. Generalizability: this represents almost any graph someone could think of, especially if you replace the data type of weight
and data
with an object (or a Template).
The disadvantages of your current implementation are that it will probably be slower than ideal. Looking across an edge will be cheap, but still take two hops instead of one (node->edge->node). Furthermore, using a list of edges is going to take you O(d) time to look up a specific edge, where d is the degree of the graph. (Your reliance on pointers also require that the graph fits in the memory of one computer; you'd have trouble with Facebook's graphs or the US road network. I doubt that parallel computing is a concern of yours at this point.)
Concerns when implementing a graph:
However, your question asks whether this is the best way. That's a difficult question, as several specific qualities of a graph come in to play.
Edge Information: If the way in which vertices are related doesn't matter (i.e., there is no weight or value to an edge), there is little point in using edge objects; this will only slow you down. Instead, each vertex can just keep a list of pointers to its neighbors, or a list of the IDs of its neighbors.
Construction: As you noticed in the comments, your current implementation requires that you have a vertex available before adding an edge. That is true in general. But you may want to create vertices on the fly as you add edges; this can make the construction look cleaner, but will take more time if the vertices have non-constant lookup time. If you know all vertices before construction the graph, it may be beneficial to explicitly create them first, then the edges.
Density: If the graph is sparse (i.e., the number of edges per vertex is approximately constant), then an adjacency list is again a good method. However, if it is dense, you can often get increased performance if you use an adjacency matrix. Every vertex holds a list of all other vertices in order, and so accessing any edge is a constant time operation.
Algorithm: What problems do you plan on solving on the graph? Several famous graph algorithms have different running times based on how the graph is represented.
Addendum:
Have a look at this question for many more comments that may help you out:
Graph implementation C++