you should use a for loop in this case, for example:
library(microbenchmark)
list_positions<-c(2,3,4)
my_list<-list(c(1,3,4),c(2,3,4,5,6),c(1,2,3,4,6))
my_fun<-function(x,y){
x[y]
}
mapply(my_fun,x=my_list,y=list_positions)
my_func1 <- function(aList, positions){
res <- numeric(length(aList))
for(i in seq_along(aList)) {
res[i] <- aList[[i]][positions[i]]
}
return(res)
}
my_func2 <- function(aList, positions) {
v1 <- unlist(aList)
p1 <- positions
v1[cumsum(lengths(my_list))- (lengths(my_list)-p1)]
}
microbenchmark(mapply(my_fun,x=my_list,y=list_positions), my_func1(my_list, list_positions), my_func2(my_list, list_positions), times = 1000)
#Unit: microseconds
# expr min lq mean median uq max neval
#mapply(my_fun, x = my_list, y = list_positions) 12.764 13.858 17.453172 14.588 16.775 119.613 1000
# my_func1(my_list, list_positions) 5.106 5.835 7.328412 6.200 6.929 38.292 1000
# my_func2(my_list, list_positions) 2.553 3.282 4.337367 3.283 3.648 52.514 1000
@akrun solution is the fastest