I'm using scipy.integrate.ode and would like to know, what happens internally when I get the message UserWarning: zvode: Excess work done on this call. (Perhaps wrong MF.) 'Unexpected istate=%s' % istate))
This appears when I call ode.integrate(t1)
for too big t1
, so I'm forced to use a for
-loop and incrementally integrate my equation, what lowers the speed since the solver can not use adaptive step size very effectively. I already tried different methods and setting for the integrator. The maximal number of steps nsteps=100000
is very big already but with this setting I still can't integrate up to 1000 in one call, which I would like to do.
The code I use is:
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import ode
h_bar=0.658212 #reduced Planck's constant (meV*ps)
m0=0.00568563 #free electron mass (meV*ps**2/nm**2)
m_e=0.067*m0 #effective electron mass (meV*ps**2/nm**2)
m_h=0.45*m0 #effective hole mass (meV*ps**2/nm**2)
m_reduced=1/((1/m_e)+(1/m_h)) #reduced mass of electron and holes combined
kB=0.08617 #Boltzmann's constant (meV/K)
mu_e=-50 #initial chemical potential for electrons
mu_h=-100 #initial chemical potential for holes
k_array=np.arange(0,1.5,0.02) #a list of different k-values
n_k=len(k_array) #number of k-values
def derivative(t,y_list,Gamma,g,kappa,k_list,n_k):
#initialize output vector
y_out=np.zeros(3*n_k+1,dtype=complex)
y_out[0:n_k]=-g*g*2*np.real(y_list[2*n_k:3*n_k])/h_bar
y_out[n_k:2*n_k]=-g*g*2*np.real(y_list[2*n_k:3*n_k])/h_bar
y_out[2*n_k:3*n_k]=((-1.j*(k_list**2/(2*m_reduced))-(Gamma+kappa))*y_list[2*n_k:3*n_k]-y_list[-1]*(1-y_list[n_k:2*n_k]-y_list[0:n_k])+y_list[0:n_k]*y_list[n_k:2*n_k])/h_bar
y_out[-1]=(2*np.real(g*g*sum(y_list[2*n_k:3*n_k]))-2*kappa*y_list[-1])/h_bar
return y_out
def dynamics(t_list,N_ini=1e-3, T=300, Gamma=1.36,kappa=0.02,g=0.095):
#initial values
t0=0 #initial time
y_initial=np.zeros(3*n_k+1,dtype=complex)
y_initial[0:n_k]=1/(1+np.exp(((h_bar*k_array)**2/(2*m_e)-mu_e)/(kB*T))) #Fermi-Dirac distributions
y_initial[n_k:2*n_k]=1/(1+np.exp(((h_bar*k_array)**2/(2*m_h)-mu_h)/(kB*T)))
t_list=t_list[1:] #remove t=0 from list (not feasable for integrator)
r=ode(derivative).set_integrator('zvode',method='adams', atol=10**-6, rtol=10**-6,nsteps=100000) #define ode solver
r.set_initial_value(y_initial,t0)
r.set_f_params(Gamma,g,kappa,k_array,n_k)
#create array for output (the +1 accounts values at t0=0)
y_output=np.zeros((len(t_list)+1,len(y_initial)),dtype=complex)
#insert initial data in output array
y_output[0]=y_initial
#perform integration for time steps given by t_list (the +1 account for the initial values already in the array)
for i in range(len(t_list)):
print(r't = %s' % t_list[i])
r.integrate(t_list[i])
if not (r.successful()):
print('Integration not successful!!')
break
y_output[i+1]=r.y
return y_output
t_list=np.arange(0,100,5)
data=dynamics(t_list,N_ini=1e-3, T=300, Gamma=1.36,kappa=0.02,g=1.095)